Team Updates

## NASA Space Apps Challenge Project##
# #
# Dataset loading
library(ranger)
library(caret)
library(data.table)
library(CRAN)
library(Rtsne)
url<-"https://heasarc.gsfc.nasa.gov/FTP/nicer/data/obs/2018_01/*/auxil/ni*.att.gz"
download.file(url, destfile="heasarcfiles.gz", mod="wb")
spacedata<-read.gz("heasarcfiles.gz", sheetIndex=1)
head(spacedata)
# Data exploration / cleaning #
dim(space_data)
head(space_data, 130)
tail(space_data, 130)
table(space_data$Class)
summary(space_data$Amount)
names(space_data)
var(space_data$Amount)
sd(space_data$Amount)
space_data %>%
mutate(id=n(nrows)),
mutate(Class=as.Integer)
# Data wrangling #
head(space_data)
space_data$Amount=scale(space_data$Amount)
NewData=space_data[,-c(1)]
head(NewData)
tsne_out<- Rtsne(as.matrix(select(space_data)),
pca=FALSE,
verbose=TRUE,
theta=0.35,
max_iter=2500,
Y_init=NULL,)
# Data modeling #
library(caTools)
set.seed(123)
data_sample= sample.split(NewData$Class,SplitRatio=0.80)
train_data= subset(NewData,data_sample==TRUE)
test_data= subset(NewData,data_sample==FALSE)
dim(train_data)
dim(test_data)
# Logistic regression model #
Logistic_Model= glm(Class~.,test_data,family=binomial())
summary(Logistic_Model)
plot(Logistic_Model)
library(pROC)
lr.predict<- predict(Logistic_Model,train_data, probability=TRUE)
auc.gbm= roc(test_data$Class, lr.predict, plot=TRUE, col="blue")
# Decision Tree model #
library(rpart)
library(rpart.plot)
decisionTree_model<- rpart(Class~. , space_data, method='class')
predicted_val<- predict(decisionTree_model, space_data, type='class')
probability<- predict(decisionTree_model, space_data, type='prob')
rpart.plot(decisionTree_model)
# Artificial Neural Network #
library(neuralnet)
ABE_model=neuralnet (Class~.,train_data,linear.output=FALSE)
plot(ABE_model)
predABE=compute(ABE_model,test_data)
resultABE=predABE$net.result
resultABE=ifelse(resultABE>0.5,1,0)
# Gradient boosting #
library(gbm, quietly=TRUE)
# Get the time to train the GBM model
system.time(
model_gbm<- gbm(Class~.
, distribution="bernoulli"
, data= rbind(train_data, test_data)
, n.trees=500
, interaction.depth=3
, n.minobsinnode=100
, shrinkage=0.01
, bag.fraction=0.5
, train.fraction= nrow(train_data) / (nrow(train_data) + nrow(test_data))
)
)
# Determine best iteration based on test data #
gbm.iter= gbm.perf(model_gbm, method="test")
model.influence= relative.influence(model_gbm, n.trees=gbm.iter, sort.=TRUE)
#Plot the gbm model #
plot(model_gbm)
# Plot and calculate AUC on test data
gbm_test= predict(model_gbm, newdata=test_data, n.trees=gbm.iter)
gbm_auc= roc(test_data$Class, gbm_test, plot=TRUE, col="red")
print(gbm_auc)
A
Abraham Mateos
.aladin-container{position:relative;border:1px solid #ddd;height:80%;}
.aladin-imageCanvas{position:absolute;z-index:1;left:0;top:0}
.aladin-catalogCanvas{position:absolute;z-index:2;left:0;top:0}
.aladin-reticleCanvas{position:absolute;z-index:3;left:0;top:0}
.aladin-logo-container{position:absolute;bottom:2px;right:5px;z-index:20;min-width:30px;max-width:80px}
.aladin-logo-small{padding:0;background:url();background-size:100%;background-repeat:no-repeat;padding-top:100%;}
.aladin-logo-large{padding:0;background:url('');background-size:100%;background-repeat:no-repeat;padding-top:58.45%;}
.aladin-location{z-index:20;position:absolute;top:0;padding:2px4px2px4px;background-color:rgba(250,250,250,0.5);font-size:11px}
.aladin-location-text{font-size:13px;margin-left:4px}
.aladin-measurement-div{z-index:147;position:absolute;bottom:0;background-color:rgba(250,250,250,0.8);font-family:monospace;font-size:12px;display:none;width:100%;overflow:auto}
.aladin-measurement-divtable{padding:2px4px2px4px;table-layout:fixed;white-space:nowrap}
.aladin-measurement-divthead{background-color:#e0e0e0;color:#000}
.aladin-measurement-divtd,.aladin-measurement-divth{padding:.3em.3em;white-space:nowrap;overflow:hidden;text-overflow:ellipsis;text-align:left}
.aladin-marker-measurement{max-height:230px;overflow-y:auto;overflow-x:hidden;font-family:monospace;font-size:11px;color:#000}
.aladin-marker-measurementtable{table-layout:fixed;width:100%}
.aladin-marker-measurementtabletrtd{word-wrap:break-word}
.aladin-marker-measurementtr:nth-child(even){background-color:#ddd}
.aladin-marker-measurementtd:first-child{font-weight:bold}
.aladin-fov{z-index:20;position:absolute;padding:0;font-size:12px;font-weight:bold;bottom:0;padding:2px;color:#321bdf;background-color:rgba(255,255,255,0.5)}
.aladin-maximize{position:absolute;top:6px;right:3px;z-index:20;width:30px;height:30px;background-image:url('');background-repeat:no-repeat;background-position:center center}
.aladin-layersControl-container{position:absolute;top:30px;left:4px;cursor:pointer;z-index:20;background:rgba(250,250,250,0.8);border-radius:4px}
.aladin-layersControl-container:hover{background:rgba(210,210,210,0.8)}
.aladin-layersControl{width:32px;height:34px;background-image:url('');background-repeat:no-repeat;background-position:center center}
.aladin-layerBox{top:50px;padding:4px4px10px10px}
.aladin-box{display:none;z-index:30;position:absolute;background:#eee;left:4px;border-radius:4px;font-size:14px;font-family:Verdana,Lucida,Arial;line-height:1.3;color:#222}
.aladin-gotoControl-container{position:absolute;top:68px;left:4px;cursor:pointer;z-index:20;background:rgba(245,245,245,0.8);border-radius:4px}
.aladin-gotoControl-container:hover{background:rgba(210,210,210,0.8)}
.aladin-gotoControl{width:32px;height:34px;background-image:url('');background-repeat:no-repeat;background-position:center center}
.aladin-gotoBox{top:48px;padding:4px}
.aladin-target-form{padding:5px}
.aladin-shareControl-container{position:absolute;top:106px;left:4px;cursor:pointer;z-index:20;background:rgba(250,250,250,0.8);border-radius:4px}
.aladin-shareControl-container:hover{background:rgba(210,210,210,0.8)}
.aladin-shareControl{width:42px;height:44px;background-image:url('');background-repeat:no-repeat;background-position:center center}
.aladin-shareBox{top:106px;padding:4px}
.aladin-target-forminput{width:140px;margin-left:5px}
.aladin-cb-listul{margin:0;padding-left:4px;list-style:none}
.aladin-cb-listlabel{display:inline}
.aladin-cb-listinput[type="checkbox"]{margin:3px}
.aladin-closeBtn{float:right;margin-top:002px0;cursor:pointer;color:#605f61;border:1px solid #aeaeae;border-radius:3px;background:#fff;font-size:15px;font-weight:bold;display:inline-block;line-height:0;padding:8px2px}
.aladin-closeBtn:hover{color:#201c22}
.aladin-label{font-weight:bold;padding-bottom:4px}
.aladin-box-separator{height:0;border-top:1px solid #bbb;margin:5px05px-4px}
.aladin-blank-separator{height:10px}
.aladin-restore{position:absolute;top:6px;right:3px;z-index:20;width:30px;height:30px;background-image:url('');background-repeat:no-repeat;background-position:center center}
.aladin-fullscreen{position:fixed !important;z-index:9999;top:0;left:0;height:100%!important;width:100%!important;border:0!important;max-width:none !important;background:#fff;}
.aladin-zoomControl{z-index:20;position:absolute;top:50%;height:48px;right:8px;padding:0;margin:-24px000;font-weight:bold;font-size:18px;font-family:Arial,Arial,Arial}
.aladin-zoomControla{width:20px;height:20px;line-height:18px;display:block;background-color:rgba(250,250,250,0.8);margin:1px;text-align:center;border-radius:4px;border:1px solid #aaa;text-decoration:none;color:#222}
.aladin-zoomControla:hover{background-color:rgba(210,210,210,0.8)}
.aladin-surveySelection{width:100px}
.aladin-cmSelection{width:60px;margin-right:10px}
.aladin-layerIcon{width:4px;height:12px;background:#f00;display:inline-block}
.aladin-btn{display:inline-block;padding:6px8px;margin-bottom:0;font-size:12px;font-weight:normal;text-align:center;white-space:nowrap;vertical-align:middle;cursor:pointer;border:1px solid transparent;border-radius:3px;color:#fff;background-color:#428bca;border-color:#357ebd}
.aladin-btn-small{font-size:10px}
.aladin-button:hover{color:#fff;background-color:#3276b1;border-color:#285e8e}
.aladin-unknownObject{border:3px solid #f00}
.aladin-popup-container{z-index:25;position:absolute;width:150px;display:none;line-height:1.3}
.aladin-popup{font-family:Verdana,Lucida,Arial;font-size:13px;background:#fff;border:1px solid #bbb;border-radius:4px;padding:4px;top:80px;left:110px}
.aladin-popup-arrow{display:block;border-color:#fff transparent transparent;border-style:solid;border-width:12px;width:0;height:0;margin-top:-1px;margin-left:auto;margin-right:auto;}
.aladin-popupTitle{font-weight:bold}
.aladin-layer-label{padding:04px04px;color:#ddd;border-bottom-left-radius:8px;border-top-left-radius:8px;border-bottom-right-radius:8px;border-top-right-radius:8px;cursor:pointer}
A
Abraham Mateos
defcompute_probabilities(X, betha, image_selection):
"""
Computes, for each datapoint X[i], the probability that X[i] is labeled as j
for j = 0, 1, ..., k-1
Args:
X = (n, d) NumPy array (n datapoints within the datasets from Agencies each with d features)
betha = (k, d) NumPy array, where row j represents the parameters of our model for label j
image_selection = the temperature parameter of softmax function (scalar)
Returns:
H = (k, n) NumPy array, where each entry H[j][i] is the probability that X[i] (image) is labeled as j
and included inside the list of results after the user's choice
"""
itemp=1/image_selection
selection_channel==2*X^i
selection_channel=selection_channel%>%sum(itemp+betha)
dot_products=itemp*betha.dot(X.T)
max_of_columns=dot_products.max(axis=0)
shifted_dot_products=dot_products-max_of_columns
exponentiated=np.exp(shifted_dot_products)
col_sums=exponentiated.sum(axis=0)
returnexponentiated/col_sums
A
Abraham Mateos